Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms
نویسندگان
چکیده
BACKGROUND The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. RESULTS In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. CONCLUSIONS ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of extensively degrading a broad range of the hydrocarbons mainly composing diesel fuels. Given their remarkable biodegradation potential, stability and resistance to cryopreservation, both consortia appear very interesting candidates for bioaugmentation operations on Diesel fuel impacted soils and sites.
منابع مشابه
Environmental biotechnology Lectures L15.1 Biodegradation of biodiesel/diesel blends in soils: effects on hydrocarbon dissipation and natural microbial communities
It is generally considered that the addition of biodiesel has a positive effect on biodegradation of diesel fuel hydrocarbons. Although the stimulating effect has been widely recognized, the exact mechanisms behind this phenomenon are still not entirely elucidated. While the presence of biodiesel may induce dispersion of diesel fuel hydrocarbons, thereby increasing their overall bioavailability...
متن کاملIsolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils
Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bi...
متن کاملDevelopment of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films
This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of ...
متن کاملDiesel Degradation and Bioemulsifiers Production Using Bubble-Column with a Microbial Consortium Isolated from Hydrocarbon-Contaminated Soil
Diesel is composed of various toxic compounds that can have a negative influence on the environment including plants, microorganisms, and even groundwater being used for cultivation and human consumption. Diesel oil biodegradation kinetics was investigated using bubble-column reactor and microbial consortium isolated from a hydrocarbons spill site and were assessed<em...
متن کاملNutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia
Microbial communities (MCs) create complex metabolic networks in natural habitats and respond to environmental changes by shifts in the community structure. Although members of MCs are often not amenable for cultivation in pure culture, it is possible to obtain a greater diversity of species in the laboratory setting when microorganisms are grown as mixed cultures. In order to mimic the environ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2010